

c:\dja\damson\damson.doc 1 Version 3.3

A User Guide to the
DAMSON Language

for BIMPA

D J Allerton

Department of Automatic Control
and Systems Engineering

University of Sheffield

Version 3.3
17 May 2010

c:\dja\damson\damson.doc 2 Version 3.3

Table of Contents

1 Introduction 3

2 The DAMSON Language 3

3 Program Structure 4

 3.1 Data Declarations 5

 3.2 Expressions 6

4 Directives 6

5 Built-in Procedures 7

6 Built-in Functions 8

7 Packets 9

8 Event-driven DAMSON 10

9 Interrupts 11

10 Threads and Semaphores 12

11 Examples 13

 11.1 A Small Program (with integers) 13

 11.2 Another Small Program (with floats) 15

 11.3 Clock Interrupts 16

 11.4 Packet Transfers 17

 11.5 Plotting 20

 11.6 An Integrate-and-fire Neuron Model 23

 11.7 Threads and Semaphores 27

12 Running a DAMSON Program 29

13 Limitations 29

14 Run-time Errors 29

Appendix 1 Fixed-point Arithmetic 31

Appendix 2 Intermediate Code 34

c:\dja\damson\damson.doc 3 Version 3.3

1 Introduction

DAMSON1 is a compiler and simulator for the Spinnaker architecture. It is a subset of the C
programming language, allowing the software for Spinnaker cores to be defined and
simulated. Floating-point operations are implemented using fixed-point arithmetic,
appropriate to the ARM processor used on Spinnaker. DAMSON enables users to define a set
of network nodes and monitor their behaviour, simulating the multicast packet transfers
provided by Spinnaker. The syntax of DAMSON supports the event-driven behaviour found in
Spinnaker.

The main aim of DAMSON is to provide a tool to simulate software running on a number of
Spinnaker cores sending packets between cores. Such a tool enables users (possibly without
Spinnaker hardware) to develop and test their software on a PC. Although the code will run
relatively slowly on a PC, it should be equivalent, in terms of its functional behaviour, on
both Spinnaker hardware and off-line emulation. To provide a high degree of portability and
a well-defined interface, DAMSON has the following characteristics:

• It is compatible with the majority of the syntax of ANSI-C;

• It will simulate 1000+ nodes running concurrently;

• It compiles and runs on gcc/MinGW for WindowsXP and gcc for Linux;

• It supports the type float using 32-bit fixed-point arithmetic where a float has a 16-
bit integer part and a 16-bit fraction part (one possible implementation of scaled
fixed-point arithmetic for the ARM), as outlined in Appendix 1;

• It supports multicast packet transmission – based on the underlying router
architecture used in Spinnaker;

• The compiler produces code for a stack machine (similar to BCPL O-code), defined in
Appendix 2, so that production of a code generator for the ARM processor should be
straightforward or alternatively, a standard C compiler could be adapted for fixed-
point multiplication and used with a library for interrupt handling.

2 The DAMSON Language

DAMSON is based on the C programming language. The only data types are int (32-bit
integers) and float (32-bit floating-point) variables. DAMSON provides a full set of arithmetic
and logical operations on variables, allows users to define procedures and functions and
provides a set of built-in procedures and functions to transfer packets, access local clocks
and send output to the terminal.

The following features in C are not currently supported in DAMSON:

• unsigned int, char, unsigned char, double and long

• structures (the . and -> operators)

• the * (indirection) operator

• the ++ and -- operators

1 DAMSON stands for Dave Allerton’s Multi-core Simulation of Networks (until someone can think of a better acronym).

c:\dja\damson\damson.doc 4 Version 3.3

The argument for these restrictions in the language is that BIMPA applications are likely to
be organised as multiple cores running relatively simple code, communicating via packets,
where the omission of such features is unlikely to be significant.

3 Program Structure

DAMSON provides a software emulation of a network as shown in Figure 1. In these notes,
the term node is used to define a processor or core running on a Spinnaker chip. Nodes can
be declared in any order as sections of code to run on a specific processor. The typical
organisation of a DAMSON program is shown in Figure 1.

node
1

node
2

node
3

node
4

node
5

/*---------------*/
#node 1
code for node 1
/*---------------*/
#node 2
code for node 2
/*---------------*/
#node 3
code for node 3
/*---------------*/
#node 4
code for node 4
/*---------------*/
#node 5
code for node 5

bus

(a) hardware implementation

(b) DAMSON program

Figure 1 Equivalence of a DAMSON program and its hardware implementation

The set of five nodes shown in Figure 1(a) is defined as a DAMSON program in Figure 1(b).
Although the software for the five nodes is written as a sequential notation, it is simulated as
concurrent processes. The actual node numbering is arbitrary; this example simply shows
nodes 1 to 5 for clarity.

Figure 2 outlines the overall structure of a DAMSON program. The program defines all the
nodes to be implemented. The variables declared at the start of a node are effectively static
global variables (within that node). Variables passed in procedures or defined within a
procedure are local variables, with the same scoping restrictions as C. User procedures must
be declared as prototypes. The integer function main must be declared in the code section of
each node, in order to provide a start address to execute code in a node.

c:\dja\damson\damson.doc 5 Version 3.3

DAMSON program

global variables for node 123

code for node 123

global variables for node 456

code for node 456

global variables for node 789

code for node 789

Node 123

Node 456

Node 789

code for node 456

local variables for procedure f

code for procedure f

local variables for procedure g

code for procedure g

local variables for procedure h

code for procedure h

procedure f

procedure g

procedure h

Figure 2 Structure of Nodes and Procedures in a DAMSON Program

In this example of three nodes, the nodes 123, 456 and 789 run concurrently. Note that the
order of definition of the nodes is not important. The code generation for a node starts from
the point of declaration of the node (#node n) and continues until a new node is defined. A
node cannot access variables defined within another node and therefore, it is valid to
declare variables with the same name in different nodes of a DAMSON program.

3.1 Data Declarations

DAMSON supports 32-bit integers in the range -2147483648 to +2147483647 and 32-bit
floating point numbers represented by 16 bits for the integer part and 16 bits for the
fractional parts in the range -32768.0 to +32767.0, as outlined in Appendix 1. This format for
floating-point variables is only a convention, which could be changed or extended, if
necessary. The scope of a global variable is limited to the node where the variable is
declared whereas the scope of a local variable is the procedure where the variable is
declared. Variables declared in one node can only access variables in other nodes by passing
variables in a packet. The standard naming conventions of C apply, particularly the
distinction between upper case and lower (e.g. xyz and XYZ are different variables).

3.2 Expressions

c:\dja\damson\damson.doc 6 Version 3.3

An expression describes arithmetic and logical operations. Local and built-in procedures can
be called and functions can return a result. Normal operator precedence is assumed, e.g.
a+b*c is the same as a+(b*c). A considerable depth of bracketing is provided for expressions
and to override operator precedence. The full range of arithmetic and logical operators used
in C is supported. The compiler supports the same rules as C for arithmetic with differing
types and also provides explicit coercion of expressions, e.g. (int) and (float).

4 Directives

Directives are used in DAMSON to inform the compiler of some condition or setting and do
not generate any code. They are identified by a hash symbol (#) at the start of a line and are
summarised in Table 1.

Directive

Function Arguments Default

#timestamp The true system-wide time is displayed when
any output is generated (not the local node
time)

‘on’ or ‘off’

on

#node Defines the start of a node

The node
number

n/a

#monitor Packets transfers are monitored and the details
of each transfer are displayed

‘on’ or ‘off’

on

#define The same as the #define directive in C
e.g. #define maxtablesize 5000

n/a

#record Defines the period and sampling for data
recording (x-axis in plotting)

t1, t2, ∆t

1 ms

#plot Defines the channel allocated to a plotted
variable, the range of the channel and the axis
label (y-axis in plotting)

n, var, r1, r2,
“label”

n/a

#interrupt Defines the list of nodes which transmit packets
to the node and the code entry point to respond
to each interrupt

A list of
nodes

n/a

#include The same as a #include directive in C
e.g. #include “myheaderfile.h”

File name

n/a

Table 1 Directives

Note:

• The time displayed by the #timestamp directive is the true system time - the local
clock of a node can be set to drift from the true system time (by default, local clocks
are initially aligned with system-wide time with zero drift);

c:\dja\damson\damson.doc 7 Version 3.3

• The #monitor directive enables every packet transfer to be logged, displaying the
source node, the destination node, the port number, the packet content and the
time the packet is received.

• The #define directive is similar to C.

• The #interrupt directive specifies a list of source nodes from which a node can
expect a packet – this is used by the compiler to construct a routing table, so that
multicast packets are only transmitted to a specified list of nodes. For example,
#interrupt 3, 12, 34..36, 50..59, 100 implies that a node expects to receive packets
from nodes 3, 12, 34, 35, 36, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 and 100. This
directive also defines the entry point for specific interrupts (or group of interrupts)
which must be provided as a void procedure, as outlined in section 9. In DAMSON,
packet interrupts are numbered from 1 and the clock interrupt is assigned 0.

5 Built-in Procedures

DAMSON provides eight built-in procedures, which are used to sequence nodes and to
transfer packets between nodes, as defined in Table 2.

Procedure

Description Arguments

sendpkt(p, d) Broadcasts the variable d from the
current node, using port p

d - packet value
p – port number (0-4095)

delay(n) Delay the current node by n clock
ticks

n - number of clock ticks

printf(“message”, args) Same as the printf procedure used
in C

Any number of arguments
matching the message string

setclk(n) Set the clock drift rate for the local
clock of a node - initially zero

n - clock drift rate in ticks per
unit time (only used to
simulate clock drift)

exit(n) Stop executing the code in a node

n - the exit value printed

signal(&s) signal the semaphore s s – a semaphore (int)

wait(&s)

wait for the semaphore s s – a semaphore (int)

tickrate(t)

Set the clock to interrupt every t
ticks – by default, t=1000

t – clock interrupt interval

Table 2 Built-in Procedures

c:\dja\damson\damson.doc 8 Version 3.3

Note:
• sendpkt broadcasts a packet to the other nodes;
• delay suspends the current process for the specified number of clock ticks (not time)

where the clock tick rate is defined by the procedure tickrate;
• printf is identical to printf used in C;
• setclk resets the drift rate of the local clock in ticks per unit time;
• exit terminates a node (for the remainder of the program) – the only way to stop a

DAMSON program is for all nodes to execute an exit (or issue a keyboard control-C);
• signal and wait are conventional semaphore operations;
• tickrate enables the user to simulate a real-time interrupt rate.

Note that type checking is relaxed for these system calls - there is no check on the type or
number of arguments for built-in procedures and functions, e.g. exit(), exit(1), exit(2.3) and
exit (3, 4, 5) are all valid, although only the first argument is used.

6 Built-in Functions

DAMSON provides five built-in functions as defined in Table 3.

Function

Description Arguments

x=getclk() Returns the current local clock value in
ticks

n/a

x=abs(y) Absolute value of the integer y is returned

An integer

x =fabs(y) Absolute value of the float y is returned

A float

h=createthread(f, n) Create a new thread f, with workspace n,
returning a handle h

A procedure f and an
integer n

Deletethread(h) Delete the thread defined by handle h

An integer handle h

Table 3 Built-in Functions

Note:

• getclk reads the value of the local clock (which may drift) - the unit of ticks is not
currently defined - it could for example be 1 µs;

• abs and fabs are the standard C absolute functions for ints and floats, respectively.
• createthread creates a new thread which invokes the procedure f with a workspace

stack of size n. If h=0 the thread could not be created, otherwise h can be used to
delete the thread. The thread is deleted when the procedure f returns.

• deletethread(h) deletes the thread associated with the handle h.

Note that type checking is also relaxed for these system calls.

c:\dja\damson\damson.doc 9 Version 3.3

7 Packets

At present, DAMSON supports multicast packet transfers. The other three forms of packet
transfer (point-to-point, nearest-neighbour and fixed-route) will be provided as system
procedures. The procedure sendpkt is used to transmit a packet to other nodes. At the
receiving node, the #interrupt directive indicates where the node will be interrupted when a
packet arrives from the transmitting node and the user provides a procedure to respond to
this event.

At the transmitting node, sendpkt has two arguments: a port number and an optional data
(or payload) value. The physical node address and the port number (0-4095) are combined
as an identifier for the routing table hardware. The data can be a 32-bit integer or a 32-bit
floating point value or can be omitted because the type checking and argument list checking
rules are relaxed for system calls. For example, the following calls are valid for sendpkt:

#node 5

int a;
float x;

sendpkt(123, a);
sendpkt(123, x);
sendpkt(123);

At the receiving node, the packet interrupt is routed to a user-defined procedure. The node
address of the transmitting node, the port number, the optional data content and the time
of arrival of the packet are available as arguments to the user-defined procedure. For
example, assume a multicast transmission by node 5 includes node 6 and that node 5
transmits to node 6 on three ports (123, 234 and 345). The following procedure myproc
responds to the packet and can also respond to packets sent on different ports.

#node 6

float q;

#interrupt 5
void myproc(int n, int p, float d, int t);
{
 switch (p)
 {
 case 123:
 q = d;
 break;
 case 234:
 /* do something else */
 break;
 case 345:
 /* do something else */
 break;
 }
}

Note that the entry point could be defined for nodes 5 to 10, say, In this case, the node
number n allows further classification/filtering of incoming packets.

c:\dja\damson\damson.doc 10 Version 3.3

For neural applications, the concept of a port corresponds to a neuron number. A core may
simulate the behaviour of many neurons which transmit spikes to other neurons. At a
receiving neuron, the port number identifies the neuron spike. In Figure 3, although all
packets are transmitted via the bus and routing tables, the use of the port number provides
discrete channels between node A and node B.

process
A1

process
A2

process
A3

process
A4

process
B1

process
B2

process
B3

process
B4

process
B5

node A node B

port P1

port P2

port P3

port P4

port P5

port P6

32-bit packet

Figure 3 Port Numbers in packet transmissions

8 -Event-driven DAMSON

In conventional sequential C, a program waits for external events. For example, to read a
packet from another computer, a typical programming construct could be:

s = getpacket(&v, mode)

where s is the status (or result) of the transfer, v is the memory address of the data structure
set aside for the transfer and mode defines the form of transfer requested. In terms of the
language syntax, transfers typically take the form of a system call. Other system calls are also
provided to establish a link between a program and hardware ports (e.g. a socket for packet
transfers), to terminate a link or to specify details of the transfer method.

The main problem with this approach is that the program waits at this point if no data is
available (e.g. blocking I/O) or returns a status to indicate that the transfer failed to
complete, which can include a timeout condition. However, it is difficult to avoid polling for
such events and unnecessary delay can occur while the processor is waiting for an external
event. In Spinnaker, polling needs to be avoided and a core should be set to standby mode
when it has nothing to do, typically if it waiting for an input from another core or a clock tick
or a DMA transfer to complete.

An alternative representation is to associate code directly with external events. The code is
only invoked when a specific event occurs. If a core reaches a state when it has nothing to
compute, it is set into standby (power save) mode and will only be reactivated when a new
external event occurs or a clock interrupt occurs. Of course, the implication is that any
number of concurrent processes (including zero) may be active at any time on a core,
requiring an underlying scheduler for concurrent processes. One further implication is that if

c:\dja\damson\damson.doc 11 Version 3.3

several processes share a resource, they will need some form of synchronisation to ensure
consistent access, e.g. a semaphore mechanism.

Event-driven coding is supported in DAMSON by directing interrupts (typically from
incoming packets and the real-time clock) to specific code segments. This notation is
illustrated in the following example:

#node 1

/* prototypes */
void f1(int, int, int, int);
void f2(int, int, int, int);
void f3(int, int, int, int);
void clockint(int, int, int, int);

int main()
{
 /* code for the main program */
 return 0;
}

interrupt e1
void f1(int node, int port, int d1, int t1)
{
 /* code to respond to event 1 goes here */
}

interrupt e2
void f2(int node, int port, int d2, int t2)
{
 /* code to respond to event 2 goes here */
}

interrupt e3
void f3(int node, int port, int d3, int t3)
{
 /* code to respond to event 3 goes here */
}

interrupt 0
void clockint(int node, int port, int data, int time)
{
 /* code to respond to a clock interrupt goes here */
}

The run-time system (or operating system) is responsible for management of the processes.
When an event (given by e1, e2, e3 or a clock interrupt) occurs, the current process is
suspended and the process associated with the new event is activated. On completion of a
process, it is deleted (in terms of its work space) and another active process is resumed.

9 Interrupts

Interrupts form the basis of event-driven DAMSON. In DAMSON, interrupts occur as a result
of an incoming packet or a clock tick. The user can define the source nodes of expected
packets (see the #interrupt directive in section 4) and also the entry point for interrupts.
DAMSON allows a user to write an interrupt handler to respond to one specific interrupt, a
range of interrupts or a group of interrupts.

In addition, DAMSON supports packets with no data payload and enables a user to identify
the source address of an incoming packet, the port number and its time of arrival (in ticks).
By accessing the source address of a packet, one common interrupt response can be used for
a group of interrupts from different node, while allowing a response to be customised for
specific interrupts. The time of arrival of arrival of a packet can enable delays or propagation
to be modelled.

c:\dja\damson\damson.doc 12 Version 3.3

Consider a simple example:

#interrupt 3, 5..7, 10, 15..18
#interrupt 98

myprocedure(int n, int p, int x, int t)
{
 /* code to respond to the interrupt goes here */
}

Packets from nodes 3, 5, 6, 7, 10, 15, 16, 17, 18 and 98 will be responded to by the code in
myprocedure. All these interrupts will activate a new process, calling myprocedure with four
arguments: n – the source node of the packet, p the port number, x the packet content and t
the local time the packet arrived. This procedure can call other local procedures as well as
system procedures, such as printf. On completion of myprocedure, the process is
terminated.

Note that an interrupt handler can be interrupted, for example, where two interrupts occur
within a very short time of each other. At present, there is no prioritisation of interrupts. The
parameter x should have the same type as the parameter used in sendpkt at the source
node. The incoming packet is simply copied to x – there is no conversion.

10 Threads and Semaphores

Within a core, several processes may run concurrently. In particular, each interrupt
generates a new process, which is created dynamically by the run-time system. When the
primary procedure of a process returns, it is deleted as a process. Strictly, these processes
are organised as threads. The threads share a common memory space (particularly global
variables) and they can share code, but each thread has its own local work space, which is
used for local variables and parameter passing.

A thread is either created and deleted implicitly by the run-time system or is created and
deleted explicitly by the parent thread. In the latter case, two procedures are provided:

h = createthread(f, n) and
deletethread(h)

where f is a procedure defined in the local node and n is the workspace requested. If the
thread is created, the handle h is non-zero. If an error occurs during creation of the thread, h
= 0. The handle h is also used to delete the thread, unless a return from f is executed. As
soon as the thread is created, it is active and can start executing code.

Each thread is in one of three states:

• Running – it is able to execute code, if scheduled
• Delaying – suspended until the period of delay is completed
• Waiting – waiting on a semaphore (and unable to run)

c:\dja\damson\damson.doc 13 Version 3.3

As a thread can be interrupted (or pre-empted), two semaphore operations are provided in
DAMSON to enable threads to synchronise or to share common resources (mutual access):

signal(&s)
wait(&s)

where s is an integer variable, typically a global variable shared by several threads of a node.
The signal and wait operations are atomic and are equivalent to the pseudo-code below:

signal(&s) increment(s)

wait(&s) repeat

{
 if (s > 0)
 {
 decrement(s)
 return
 }
}

In practice, the implied delay in waiting for the semaphore s to become greater than zero,
results in the thread being suspended until the semaphore condition is satisfied, rather than
continuous polling of the semaphore.

11 Examples

The following examples are intended to illustrate the capability of DAMSON. The programs
were run on a Viglen 2.00 GHz PC with 2 Gbyte of RAM under Debian Linux.

Example 11.1 A Small Program (with integers)

The program contains a single node and computes factorial numbers from 1! to 10!. Note
that the function main terminates with an exit.

#node 1

#timestamp on

int f(int);

int main()
{
 int i;

 for (i=1; i<=10; i+=1)
 {
 printf("f(%d)=%d\n", i, f(i));
 }
 exit(99);
}

int f(int n)
{
 return (n <= 1) ? 1 : n * f(n-1);
}

c:\dja\damson\damson.doc 14 Version 3.3

Running the program produces the following output:

DAMSON Version 3.3
Copyright (C) Dave Allerton 2010
Fri May 14 11:53:58 2010

Nodes: 1
Workspace: 0.006004 MB
 21: 1 f(1)=1
 56: 1 f(2)=2
 102: 1 f(3)=6
 159: 1 f(4)=24
 227: 1 f(5)=120
 306: 1 f(6)=720
 396: 1 f(7)=5040
 497: 1 f(8)=40320
 609: 1 f(9)=362880
 732: 1 f(10)=3628800
Node (1) Exit 99
Execution time: 0.000149 secs
Computing ticks: 745
Standby ticks: 0 (0.00%)

The preamble defines the compiler version number, the date and time of the compilation,
the number of nodes in the program, the workspace requirement (Mbytes). The first column
is the timestamp of the local clock of node 1. The 1 on each line denotes that the output is
produced by node 1.

The information printed after the program runs, indicates that it terminated with code 99,
the program ran for 0.000149s (physical compute time), it executed for 745 ticks and that
the processor was in standby mode for 0 ticks (it was never waiting). In practice, the PC clock
is too coarse to indicate very small computation times whereas Linux provides a more
accurate measurement of elapsed time. The standby ticks value corresponds to the amount
of time the core would have been switched to standby mode.

The resultant intermediate code is as follows:

DAMSON Version 3.2
Copyright (C) Dave Allerton 2010
Wed Mar 24 08:29:09 2010

Nodes: 1
Workspace: 0.006004 Mbytes
Routing Table
Node: 1
1: ENTRY main
2: PUSHC 1
3: POPL i
4: PUSHL i
5: PUSHC 10
6: COMP_<=
7: JF L21
8: JUMP L14
9: PUSHL i
10: PUSHC 1
11: ADD
12: POPL i
13: JUMP L4
14: PUSHSTR f(%d)=%d\n
15: PUSHL i

c:\dja\damson\damson.doc 15 Version 3.3

16: PUSHL i
17: CALL 25
18: PUSHC 3
19: SYS_CALL printf
20: JUMP L9
21: PUSHC 99
22: PUSHC 1
23: SYS_CALL exit
24: RETURN main
25: ENTRY f
26: PUSHL n
27: PUSHC 1
28: COMP_<=
29: JF L32
30: PUSHC 1
31: JUMP L38
32: PUSHL n
33: PUSHL n
34: PUSHC 1
35: SUB
36: CALL 25
37: MULT
38: RETURN f

The intermediate code for the function main is given on lines 1-24 and the intermediate
code for the function f is on lines 25-38.

Example 11.2 Another Small Program (with floats)

The following DAMSON example shows a floating point function to compute the sine of an
angle. The series expansion is truncated after three terms.

#node 1

float sin(float x);

int main()
{
 int a;
 float x;
 float s;

 for (a=0; a<=90; a=a+10)
 {
 x = a / 57.29577951;
 s = sin(x);
 printf("sin(%d) = %f\n", a, s);
 }
 exit(23);
}

float sin(float x)
{
 return x - (x*x*x)/6.0 + (x*x*x*x*x)/120.0 - (x*x*x*x*x*x*x)/5040.0;
}

c:\dja\damson\damson.doc 16 Version 3.3

The output from this program is shown below.

DAMSON Version 3.3
Copyright (C) Dave Allerton 2010
Fri May 14 12:09:55 2010

Nodes: 1
Workspace: 0.006004 MB
1 sin(0) = 0.000000
1 sin(10) = 0.173645
1 sin(20) = 0.342010
1 sin(30) = 0.500000
1 sin(40) = 0.642776
1 sin(50) = 0.766037
1 sin(60) = 0.866028
1 sin(70) = 0.939697
1 sin(80) = 0.984772
1 sin(90) = 0.999863
Node (1) Exit 23
Execution time: 0.000137 secs
Computing ticks: 650
Standby ticks: 0 (0.00%)

The emulation of this small program took 650 ticks and the program executed in 137 µs.

Example 11.3 Clock Interrupts

The following example shows the response to clock interrupts.

#node 1

void clockint(int, int, int, int);

int ticks = 0;

int main()
{
 int a, b;

 printf("starting\n");

 for (a=1; a<=1000; a+=1)
 {
 b = a * a;
 }

 printf("ticks=%d\n", ticks);
 exit(123);
}

#interrupt 0

void clockint(int n, int p, int d, int t)
{
 ticks += 1;
}

The code in main simply computes the square of an integer value 1000 times and stops.
While main is executing, the clock interrupts from the local clock of node 1 invoke a process
defined by the procedure clockint, which increments the clock tick count. By default, the
clock tick rate is set to 1000 ticks/s (1000 Hz). Note that the variable ticks is a global variable,
which is initialised by main and is incremented by clockint. The output is shown below:

c:\dja\damson\damson.doc 17 Version 3.3

DAMSON Version 3.3
Copyright (C) Dave Allerton 2010
Fri May 14 12:18:16 2010

Nodes: 1
Workspace: 0.006004 MB
1 starting
1 ticks=15
Node (1) Exit 123
Execution time: 0.002267 secs
Computing ticks: 15107
Standby ticks: 0 (0.00%)

The program ran for 15107 ticks, accumulating 15 clock ticks in the interrupt handler in 2 ms.

Example 11.4 Packet Transfers

In the following example, there are three nodes, 100, 200 and 300. Node 100 broadcasts a
packet to nodes 200 and 300. When they receive their packet, node 200 broadcasts a packet
to nodes 100 and 300 and node 300 broadcasts a packet to nodes 100 and 200. The
sequence repeats for 5 clock interrupts (5000 ticks).

/* pkt testing #1 */

#monitor on
#timestamp on

/* --- */

#node 100

void clockint(int, int, int, int);
void pktint200(int, int, float, int);
void pktint300(int, int, float, int);

int ticks;

int main()
{
 tickrate(1000);
 ticks = 0;
 return 1;
}

#interrupt 200
void pktint200(int n, int p, float d, int t)
{
 printf("Node 100: port=%d pkt%d=%f t=%d\n", p, n, d, t);
}

#interrupt 300
void pktint300(int n, int p, float d, int t)
{
 printf("Node 100: port=%d pkt%d=%f t=%d\n", p, n, d, t);
}

#interrupt 0
void clockint(int n, int p, int d, int t)
{
 sendpkt(123, 1.0);
 ticks += 1;
 if (ticks >= 5)
 exit(1);

c:\dja\damson\damson.doc 18 Version 3.3

}

/* --- */

#node 200

void clockint(int, int, int, int);
void pktint100(int, int, float, int);
void pktint300(int, int, float, int);

int ticks;

int main()
{
 tickrate(1000);
 ticks = 0;
 return 2;
}

#interrupt 100
void pktint100(int n, int p, float d, int t)
{
 printf("Node 200: port=%d pkt%d=%f t=%d\n", p, n, d, t);
}

#interrupt 300
void pktint300(int n, int p, float d, int t)
{
 printf("Node 200: port=%d pkt%d=%f t=%d\n", p, n, d, t);
}

#interrupt 0
void clockint(int n, int p, int d, int t)
{
 sendpkt(234, 2.0);
 ticks += 1;
 if (ticks >= 5)
 exit(2);
}

/* --- */

#node 300

void clockint(int, int, int, int);
void pktint100(int, int, float, int);
void pktint200(int, int, float, int);

int ticks;

int main()
{
 tickrate(1000);
 ticks = 0;
 return 3;
}

#interrupt 100
void pktint100(int n, int p, float d, int t)
{
 printf("Node 300: port=%d pkt%d=%f t=%d\n", p, n, d, t);
}

#interrupt 200
void pktint200(int n, int p, float d, int t)
{
 printf("Node 300: port=%d pkt%d=%f t=%d\n", p, n, d, t);
}

#interrupt 0

c:\dja\damson\damson.doc 19 Version 3.3

void clockint(int n, int p, int d, int t)
{
 sendpkt(345, 3.0);
 ticks += 1;
 if (ticks >= 5)
 exit(3);
}

The output generated by the program is shown below:

DAMSON Version 3.3
Copyright (C) Dave Allerton 2010
Fri May 14 15:43:21 2010

Nodes: 3
Workspace: 0.018012 MB
 1005: 100->200 port 123 [65536] Rx:1005
 1005: 100->300 port 123 [65536] Rx:1005
 1012: 200 Node 200: port=123 pkt100=1.000000 t=1004
 1012: 300 Node 300: port=123 pkt100=1.000000 t=1004
 1014: 200->100 port 234 [131072] Rx:1014
 1014: 200->300 port 234 [131072] Rx:1014
 1021: 300 Node 300: port=234 pkt200=2.000000 t=1013
 1022: 100 Node 100: port=234 pkt200=2.000000 t=1014
 1023: 300->100 port 345 [196608] Rx:1023
 1023: 300->200 port 345 [196608] Rx:1023
 1031: 100 Node 100: port=345 pkt300=3.000000 t=1023
 1031: 200 Node 200: port=345 pkt300=3.000000 t=1023
 2005: 100->200 port 123 [65536] Rx:2005
 2005: 100->300 port 123 [65536] Rx:2005
 2012: 200 Node 200: port=123 pkt100=1.000000 t=2004
 2012: 300 Node 300: port=123 pkt100=1.000000 t=2004
 2014: 200->100 port 234 [131072] Rx:2014
 2014: 200->300 port 234 [131072] Rx:2014
 2021: 300 Node 300: port=234 pkt200=2.000000 t=2013
 2022: 100 Node 100: port=234 pkt200=2.000000 t=2014
 2023: 300->100 port 345 [196608] Rx:2023
 2023: 300->200 port 345 [196608] Rx:2023
 2031: 100 Node 100: port=345 pkt300=3.000000 t=2023
 2031: 200 Node 200: port=345 pkt300=3.000000 t=2023
 3005: 100->200 port 123 [65536] Rx:3005
 3005: 100->300 port 123 [65536] Rx:3005
 3012: 200 Node 200: port=123 pkt100=1.000000 t=3004
 3012: 300 Node 300: port=123 pkt100=1.000000 t=3004
 3014: 200->100 port 234 [131072] Rx:3014
 3014: 200->300 port 234 [131072] Rx:3014
 3021: 300 Node 300: port=234 pkt200=2.000000 t=3013
 3022: 100 Node 100: port=234 pkt200=2.000000 t=3014
 3023: 300->100 port 345 [196608] Rx:3023
 3023: 300->200 port 345 [196608] Rx:3023
 3031: 100 Node 100: port=345 pkt300=3.000000 t=3023
 3031: 200 Node 200: port=345 pkt300=3.000000 t=3023
 4005: 100->200 port 123 [65536] Rx:4005
 4005: 100->300 port 123 [65536] Rx:4005
 4012: 200 Node 200: port=123 pkt100=1.000000 t=4004
 4012: 300 Node 300: port=123 pkt100=1.000000 t=4004
 4014: 200->100 port 234 [131072] Rx:4014
 4014: 200->300 port 234 [131072] Rx:4014
 4021: 300 Node 300: port=234 pkt200=2.000000 t=4013
 4022: 100 Node 100: port=234 pkt200=2.000000 t=4014
 4023: 300->100 port 345 [196608] Rx:4023
 4023: 300->200 port 345 [196608] Rx:4023
 4031: 100 Node 100: port=345 pkt300=3.000000 t=4023
 4031: 200 Node 200: port=345 pkt300=3.000000 t=4023
 5005: 100->200 port 123 [65536] Rx:5005
 5005: 100->300 port 123 [65536] Rx:5005
 5012: 200 Node 200: port=123 pkt100=1.000000 t=5004
 5012: 300 Node 300: port=123 pkt100=1.000000 t=5004

c:\dja\damson\damson.doc 20 Version 3.3

 5014: 200->100 port 234 [131072] Rx:5014
 5014: 200->300 port 234 [131072] Rx:5014
 5021: 300 Node 300: port=234 pkt200=2.000000 t=5013
 5022: 100 Node 100: port=234 pkt200=2.000000 t=5014
 5023: 300->100 port 345 [196608] Rx:5023
 5023: 300->200 port 345 [196608] Rx:5023
 5031: 100 Node 100: port=345 pkt300=3.000000 t=5023
 5031: 200 Node 200: port=345 pkt300=3.000000 t=5023
Node (100) Exit 1
Node (200) Exit 2
Node (300) Exit 3
Execution time: 0.000358 secs
Computing ticks: 15102
Standby ticks: 14592 (96.62%)
Node=100 TxPkts=5 RxPkts=10
Node=200 TxPkts=5 RxPkts=10
Node=300 TxPkts=5 RxPkts=10

Note that monitoring is turned on so that each transfer is logged to display the source node,
destination node, packet contents and time of transmission. Note also that the arguments of
the system call sendpkt and the procedure interrupt are of type float but equally, could have
been specified as type int.

Note that 15 packets were broadcast and 30 packets were received. The program completed
in 15093 ticks and 14628 ticks occurred while the nodes were waiting for an interrupt (cores
in standby mode).

Example 11.5 Plotting

Although DAMSON output can be routed directly to a file and post-processed, DAMSON also
supports graphical output compatible with GNUplot. The start and stop times of the
recording and the sampling interval are defined by the directive #record. Similarly, a variable
in a node can be recorded on any one of up to 10 channels, where the numeric range and
axis label is defined by the #plot directive.

Consider a simple example of two nodes running at a frame rate of 1 ms. One process
generates a pulse train output at 5 Hz which is sent to the other node every 100 ms, which
uses this pulse train to generate a 1.25 Hz pulse train. Both pulse trains are recorded and
plotted. The following DAMSON program plots the variable output of both nodes 100 and
200.

c:\dja\damson\damson.doc 21 Version 3.3

/* pulse train example
 DJA 2 March 2010 */

#monitor on
#timestamp on
#record 0.0 5.0 0.001

/* --- */
#node 100

void clockint(int, int, int, int);

float output = 1.0;
int ticks = 0;
#plot 1 output -2 2 node 100

int main()
{
 tickrate(1000);
 return 1;
}

#interrupt 0
void clockint(int n, int p, int x, int t)
{
 ticks += 1;
 if (ticks % 100 == 0)
 {
 output = -output;
 sendpkt(1234, output);
 if (ticks >= 5000)
 {
 exit(100);
 }
 }
}

/* --- */
#node 200

void pktint100(int, int, float, int);
void clockint(int, int, int, int);

int ticks;
int pulses;
float output;

#plot 2 output -2 2 node 200

int main()
{
 ticks = 0;
 pulses = 0;
 output = 1.0;
 return 2;
}

#interrupt 100
void pktint100(int n, int p, float d, int t)
{
 pulses += 1;
 if (pulses % 4 == 0)
 {
 output = -output;
 }
}

#interrupt 0
void clockint(int n, int p, int x, int t)

c:\dja\damson\damson.doc 22 Version 3.3

{
 ticks += 1;
 if (ticks >= 5000)
 {
 exit(200);
 }
}

A fragment of the data file produced by the program is shown below:

0.093000, 0.000000, 1.000000
0.094000, 0.000000, 1.000000
0.095000, 0.000000, 1.000000
0.096000, 0.000000, 1.000000
0.097000, 0.000000, 1.000000
0.098000, 0.000000, 1.000000
0.099000, 0.000000, 1.000000
0.100000, -1.000000, 1.000000
0.101000, -1.000000, 1.000000
0.102000, -1.000000, 1.000000
0.103000, -1.000000, 1.000000
0.104000, -1.000000, 1.000000
0.105000, -1.000000, 1.000000

The DAMSON program also generates a plot script which is compatible with GNUplot. The
script file is generated in the same directory as the DAMSON program. A DAMSON program
xyz.d will generate the files xyz.dat and xyz.plt, if any data is explicitly recorded and is
generated for plotting. A typical GNUplot script (automatically generated by DAMSON) is
shown below:

set terminal png truecolor font arial 8 size 600,800
set output "test252.png"
set size 1,1
set origin 0,0
set lmargin 10
set multiplot
set grid
set format y "%5g"
set size 1.0, 0.500000
set origin 0, 0.500000
set ylabel "node 100"
set xr[0.000000:5.000000]
set yr[-2.000000:2.000000]
plot 'test252.dat' using 1:2 notitle with lines
set origin 0, 0.000000
set ylabel "node 200"
set xr[0.000000:5.000000]
set yr[-2.000000:2.000000]
plot 'test252.dat' using 1:3 notitle with lines
unset multiplot
reset
set output

The resultant .png file produced by running GNUplot can be imported directly into standard
packages such as MS Word. In this case, a DAMSON program xyz.d will generate a file
xyz.png, as shown in Figure 4.

c:\dja\damson\damson.doc 23 Version 3.3

Figure 4 A GNUplot Example

Example 11.6 An Integrate-and-fire Neuron Model

The following DAMSON program of three nodes implements a simple integrate-and-fire
neuron model with spiking inputs produced by node 1, where node 2 exhibits the
characteristics of a Tsodyks and Markram facilitating synapse and node 3 represents a
Tsodyks and Markram depressing synapse.

/* IF_cond_exp /w Tsodyks & Markram synapses example
 Leaky integrate and fire model with fixed threshold
 and exponentially-decaying post-synaptic conductance.

 IF neurons fed by spike source array with
 depressing and facilitating Tsodyks & Markram synapses.

 Node 2 models a Tsodyks and Markram facilitating synapse
 Node 3 models a Tsodyks and Markram depressing synapse */

#timestamp on
#record 0.0 2.0 0.02 /* 50 Hz sampling */

/* ---------------------------------- */
/* spike_source_array */

#node 1

void clockint(int, int, int, int);

c:\dja\damson\damson.doc 24 Version 3.3

int ticks;

int main()
{
 tickrate(20000); /* 50 Hz frame rate */
 ticks = 0;
 return 1;
}

#interrupt 0
void clockint(int n, int p, int x, int t)
{
 float source;
 #plot 1 source 0.0 1.0 source

 ticks += 1;
 if ((ticks < 100) && (ticks % 10) == 0)
 {
 source = 1.0;
 sendpkt(0, source); /* generate a spike every 200 ms, during the 1st sec) */
 }else{
 source = 0.0;
 }
 if (ticks >= 200)
 {
 exit(1);
 }
}

/* ---------------------------------- */
/* IF_cond_exp neuron */

#node 2

void clockint(int, int, int, int);
void pktint(int, int, float, int);

float G, ge, gi, i_offset, i_inj, e_rev_E, e_rev_I, c_m;
float v, v_reset, v_rest, tau_m;
float tau_syn_E, tau_syn_I, dt;
float R, U, tau_rec, tau_fac, Use, Gtm;
int ticks, pkt1;

int main()
{
 tickrate(20000);

 ge=0.0;
 gi=0.0;
 i_offset=0.1;
 i_inj=0.0;
 e_rev_E=0.0;
 e_rev_I=-75.0;
 c_m=1.0;
 v_reset=-70.0;
 v_rest=-65.0;
 tau_m=200.0;
 tau_syn_E=5.0;
 tau_syn_I=5.0;
 dt=1.0;
 ticks=0;

 v = v_rest;

 /* Facilitating TsodyksMarkram mechanism */
 tau_rec=100.0;
 tau_fac=20000.0;
 Use=0.04;
 R=1.0;

c:\dja\damson\damson.doc 25 Version 3.3

 U=0.0;
 pkt1 = 0;
 return 2;
}

#interrupt 1 /* Synapse input */
void pktint(int n, int p, float x, int t)
{
 pkt1 = 1;
}

#interrupt 0
void clockint(int n, int p, int t, int clk)
{
 float output;
 #plot 2 output 0.0 0.002 facilitating synapse (nS)

 ticks += 1;
 if (pkt1 != 0)
 {
 gi+=0.01;
 // TsodyksMarkram mechanism
 R = R + dt*((1.0-R)/tau_rec - U*R);
 U = U + dt*((-U/tau_fac) + Use*(1.0-U));
 pkt1 = 0;
 }
 else
 {
 R = R + dt*((1.0-R)/tau_rec);
 U = U + dt*((-U/tau_fac));
 }

 /* Synapse - exponential-decaying post-synaptic conductance */
 Gtm = R*U;
 G = (ge*(e_rev_E-v) + gi*Gtm*(e_rev_I-v) + i_offset + i_inj)/c_m;
 ge = ge + dt*(-ge/tau_syn_E);
 gi = gi + dt*(-gi/tau_syn_I);

 /* Membrane potential */
 v = v + dt*(G + (v_rest-v)/tau_m);
 output = gi*Gtm;

 if (ticks >= 200)
 {
 exit(2);
 }
}
/* ---------------------------------- */
/* IF_cond_exp neuron */

#node 3

void clockint(int, int, int, int);
void pktint(int, int, float, int);

float G, ge, gi, i_offset, i_inj, e_rev_E, e_rev_I, c_m;
float v, v_reset, v_rest, tau_m;
float tau_syn_E, tau_syn_I, dt;
float R, U, tau_rec, tau_fac, Use, Gtm;
int ticks, pkt1;

int main()
{
 tickrate(20000);

 ge=0.0;
 gi=0.0;
 i_offset=0.1;
 i_inj=0.0;
 e_rev_E=0.0;

c:\dja\damson\damson.doc 26 Version 3.3

 e_rev_I=-75.0;
 c_m=1.0;
 v_reset=-70.0;
 v_rest=-65.0;
 tau_m=200.0;
 tau_syn_E=5.0;
 tau_syn_I=5.0;
 dt=1.0;
 ticks=0;

 v = v_rest;

 /* Depressing TsodyksMarkram mechanism */
 tau_rec=800.0;
 tau_fac=0.0;
 Use=0.5;
 R=1.0;
 U=Use;
 pkt1 = 0;
 return 3;
}

#interrupt 1 /* Synapse input */
void pktint(int n, int p, float x, int t)
{
 pkt1 = 1;
}

#interrupt 0
void clockint(int n, int p, int t, int clk)
{
 float output;
 #plot 3 output 0.0 0.002 depressing synapse (nS)

 ticks += 1;
 if (pkt1 == 1)
 {
 gi = gi + 0.01;
 // TsodyksMarkram mechanism
 R = R + dt*((1.0-R)/tau_rec - U*R);
 pkt1 = 0;
 }
 else
 {
 R = R + dt*((1.0-R)/tau_rec);
 }

 /* Synapse - exponential-decaying post-synaptic conductance */
 Gtm = R*U;
 G = (ge*(e_rev_E-v) + gi*Gtm*(e_rev_I-v) + i_offset + i_inj)/c_m;
 ge = ge + dt*(-ge/tau_syn_E);
 gi = gi + dt*(-gi/tau_syn_I);

 /* Membrane potential */
 v = v + dt*(G + (v_rest-v)/tau_m);
 output = gi*Gtm;

 if (ticks >= 200)
 {
 exit(3);
 }
}

The GNUplot output from the DAMSON program is shown in Figure 5.

c:\dja\damson\damson.doc 27 Version 3.3

Figure 5 Graphical Output from GNUplot – Integrate-and Fire Neuron Model

Example 11.7 Threads and Semaphores

The ‘dining philosophers’ problem illustrates an application of multiple threads and
semaphores. Assume there are five philosophers; they either think or eat at a table set for
five places, as shown in Figure 6, where both actions take a random time.

Figure 6 The Dining Philosophers Problem

c:\dja\damson\damson.doc 28 Version 3.3

However, in order to dine, a philosopher needs both a left hand fork and a right hand fork. If
the adjacent left hand fork or right hand fork is in use, the philosopher must wait to eat. The
objective is to implement an algorithm using semaphores to ensure that no philosopher
starves (the issues of hygiene of sharing forks and spaghetti slipping through the forks are
not addressed here – these are strictly hardware problems).

The code for a single philosopher is shown below:

void p2()
{
 int eating;
 int thinking;

 for (;;)
 {
 thinking = randomnumber(100);
 printf("p2 thinking %d\n", thinking);
 delay(thinking);

 wait(&c);
 wait(&f2);
 wait(&f3);
 signal(&c);
 eating = randomnumber(20);
 printf("p2 eating %d\n", eating);
 delay(eating);
 signal(&f2);
 signal(&f3);
 }
}

The semaphore c is used as a guard to access the set of forks (initially c=4 for 5
philosophers), while the nth philosopher needs to access the nth fork and the (n+1)th fork,
with their respective semaphores. The procedure p2 is created as a separate thread, with
five threads for the five philosophers. Note that the actions of thinking and eating are
modelled as random delays.

The code to create the threads is shown below:

int main()
{
 int h;

 Seed = 123456789;

 h = createthread(p1, 500);
 h = createthread(p2, 500);
 h = createthread(p3, 500);
 h = createthread(p4, 500);
 h = createthread(p5, 500);
 delay(50000);
 exit(12345);
}

The procedure main is created as a thread, which in turn creates the five threads p1 to p5,
representing the five philosophers. The procedure main is itself delayed for 50,000 ticks until
it terminates with an exit, stopping the node (and all its threads).
12 Running a DAMSON Program

c:\dja\damson\damson.doc 29 Version 3.3

From an MS Windows MinGW terminal or a Linux shell, type:

./damson filename.d

where filename is the name of the DAMSON source file. Note that DAMSON expects source
files to have an extension .d. The DAMSON program is compiled and error messages are
logged if any compilation errors are detected.

If no errors are detected during compilation, the DAMSON program is executed and the
output from the program is written to the terminal. To divert output from a DAMSON
program to a file (e.g. results.txt) use:

./damson filename.d > results.txt

To view the intermediate code produced by the DAMSON compiler, add the switch -dis to
the command line, for example:

./damson test23.d –dis

To generate a routing table, add the switch –rt. A file name the same name as the source file
and the extension .tab will be generated.

./damson prog.d –rt

13 Limitations

The DAMSON language is designed to provide a simple programming language to develop
BIMPA applications. However, the compiler is small and has a number of limitations:

• Compilation errors only indicate the line where the error was detected, not the position
within the line;

• There are no checks on the number of parameters or types of parameters passed in built-
in (system) procedures or functions – this is similar to printf in C;

• There is a predefined limit to the program code size of a compiled DAMSON program, the
number of variables declared for a node and workspace size for the stack of each node.
These are arbitrary constants in the compiler and can easily be modified.

14 Run-time Errors

With event-driven applications, there are relatively few run-time errors. For example,
packets are not queued, rather they generate a new process in another node and similarly, it
may be appropriate for a packet never to be generated, making a read timeout condition
redundant.

c:\dja\damson\damson.doc 30 Version 3.3

The following list is a summary of the major run-time errors that can be encountered in
DAMSON programs:

Error

Description

Too Many Processes

Each interrupt activates a process, which requires workspace;
if there are too many interrupts, an error condition is raised if
there is insufficient space for the process.

No Node Defined If code is generated for a node without defining the node
number, an error is raised.

Node Allocation Nodes are allocated dynamically – if there is insufficient
memory, an error is raised.

Stack Overflow/Underflow A finite amount of stack is provided to support local
variables, parameter passing and recursion. If an attempt is
made to place an item on the stack but there is insufficient
space, a stack overflow exception is raised. Similarly, if an
attempt is made to remove an item from an empty stack, a
stack underflow exception is raised.

Multicast Error In formulating the routing tables, each node has a list of its
output nodes. If any attempt is made to transmit a packet to
a node which is not expecting a packet from the source node,
an error is raised.

Procedure main Missing Each node starts with the procedure main. If this procedure is
not defined for a node, a run-time exception is raised.

PC Out of Range Each node has a finite code space – any attempt to access
code outside this range is flagged.

Unknown Instruction If a node attempts to execute an instruction which is not
recognised by the interpreter, a run-time error is raised.

Link Allocation The routing table information is allocated dynamically – if
there is insufficient memory, an error is raised.

Data Recording Overflow A finite amount of storage is provided to record data
variables. If the space available is insufficient, this condition
is raised.

c:\dja\damson\damson.doc 31 Version 3.3

Appendix 1

Fixed-point arithmetic

The use of DAMSON for the ARM processor can:

• Avoid using any floating-point software as a floating-point operation would require
several hundred machine instructions.

• Allow the user to specify both integers (int) and floating point variables (float).

• Provide a reasonable resolution (accuracy) using a scaled fixed-point notation.

• Implement scaled fixed-point arithmetic to run on an ARM processor and to be
emulated on a PC as fast as possible and in a straightforward way.

In DAMSON, the user simply defines a variable as an int or float in the normal way. How
these variables are represented and operated upon is transparent to the user. Nevertheless,
it would seem reasonable to use a similar mechanism in DAMSON to implement scaled
fixed-point arithmetic, so that results from a PC emulation will have the same accuracy as
results computed on an ARM processor. Therefore, the word size of variables and
conventions for dealing with any scaled arithmetic should be consistent with the
implementation on an ARM processor.

As the ARM processor does not have hardware floating-point, the following notation is
proposed to represent floating-point arithmetic. Variables are represented as 32-bit
variables with 16 bits for the signed integer part and 16 bits for the remainder, as shown in
Figure A1.

integer part fraction part

16 bits 16 bits

implied decimal point

Figure A1 Scaled Fixed-point Arithmetic Notation

For example, the following scaled fixed-point numbers are represented in four bytes as
follows:

2.0 00000000 00000010 00000000 00000000
-3.0 11111111 11111101 00000000 00000000
4000.0 11111010 00000000 00000000 00000000
0.25 00000000 00000000 01000000 00000000
-0.25 11111111 11111111 11000000 00000000
0.0084076 00000000 00000000 00000000 00000001
32767.0 01111111 11111111 00000000 00000000

In other words, the number range is -32768 to + 32767 and the resolution is approximately
8.4076x10-3. It is assumed that, for the majority of applications appropriate to BIMPA, the
range and accuracy implied by this notation will be sufficient. Using a notation of this form,

c:\dja\damson\damson.doc 32 Version 3.3

the addition and subtraction of 32-bit scaled fixed-point numbers is achieved using integer
arithmetic, taking care to avoid overflow (numbers < -32768 or > 32767). Note that this
16:16 convention is just one representation of fixed-point arithmetic. It would be
straightforward to extend this approach to 8:24 or 32:32 bit representation.

Care is needed with multiplication and division. Clearly, the result of any multiplication must
be in the range given above, while minimising loss of accuracy in the computation. Note that
the identities 1.0×1.0=1.0 and 1.0÷1.0=1.0 must hold. Consider the multiplication 3.0×2.0. In
integer arithmetic, 3.0 = 3×216 and 2.0 = 2×216 giving a result 6×232. To restore the value to its
correct magnitude for scaled fixed-point arithmetic, the result must be divided by 216, which
is easily achieved by shifting the result 16 places to the right (arithmetically).

The 32×32 multiplication instruction on the ARM processor produces a 64-bit result. Shifting
the 64-bit result 16 places to the right and copying the low 32 bits of this register to a 32-bit
register restores the magnitude of the result. Care is need for both overflow and underflow.
In overflow, any bits set in the most significant 16 bits of the 64-bit register are lost and the
remnant will not hold a valid result. Similarly, if two small fractions are multiplied, the 16
least significant bits are discarded during the shift.
The C code a = b * c is equivalent to the following generic assembler code:

MOVE b,r1
MOVE c,r2
MULT r1,r2
SHIFTR r1,#16
MOVE r2,a

where r1:r2 are treated as a single 64-bit register pair.

Note that there is no need to treat the sign independently; it is correctly computed during
the instructions.

Division can also be accomplished in a similar way. Consider the division 6.0÷2.0. In integer
arithmetic, 6.0 = 6×216 and 2.0 = 2×216 giving a result 3.0×20. However, if the dividend is
multiplied by 216 prior to the division, the correct result 3.0×216 is achieved. Again, the
multiplication by 216 is implemented as an arithmetic shift (left) where the ARM division
instruction computes integer division of a 64-bit number by a 32-bit number. The C code for
the expression a = b / c is equivalent to the following generic assembler code:

MOVE b,r1
SHIFTL r1,#16
DIV r1,c
MOVE r1,a

assuming that r1 holds the 32-bit result and r2 holds the 32-bit quotient after the division.

c:\dja\damson\damson.doc 33 Version 3.3

The clear advantage is that the equivalent of floating point operations are performed in 4 or
5 integer instructions. Moreover, the compiler knows the type of each variable and is able to
convert integer values to scaled fixed-point equivalent values if implied in the computation.
For operations on integer-only values or floating-point-only values, there is no need for
manipulation of the variables.

In the emulation of DAMSON, the types of each operand are known and the appropriate
integer arithmetic is invoked. For an implementation on the ARM processor, the code
generator will generate the necessary integer arithmetic instructions to be executed directly
by the processor, derived from the intermediate code used by the DAMSON stack machine
architecture.

c:\dja\damson\damson.doc 34 Version 3.3

Appendix 2

Intermediate Code Format

The intermediate code generated by DAMSON meets the following objectives:

• It has a compact form.

• It is a simple format that can be easily emulated or interpreted

• It provides the basis for an optimising code generator

A simple machine is assumed with a program counter (PC) pointing to the next instruction to
be executed, a stack pointer (SP) pointing to the most recently pushed item on the stack and
a frame pointer (FP) pointing to the start of the frame on the stack holding the local
arguments. The machine has a linear word-addressed 32-bit memory starting from address
0. The global variables of a node start from memory address 1 and the stack needed by a
node is dynamically allocated from its memory.

Within each simulated node, one process is allocated to the procedure main (and its
procedures) and new processes are activated by the arrival of an interrupt. Processes are
terminated when their parent procedure returns (including main).

Arithmetic instructions operate on the items at the top of the stack and consequently, have
no arguments. For example, the DAMSON code

a = b + c

is implemented by the following instructions:

push b
push c
add
pop a

The add instruction adds the top two items on the stack and leaves the result of the addition
on the top of the stack, decrementing the stack pointer, as shown in Figure A2, which depicts
the state of the stack after each instruction.

b+cSP

SP

bSP b

cSP

push b push c add pop a

Figure A2 Execution of an Addition Instruction for a Stack Machine

c:\dja\damson\damson.doc 35 Version 3.3

Table 1 summarise the 42 intermediate code instructions used by the DAMSON compiler and
emulator. Where no argument is defined, the instruction is simply a single byte.

Op code Argument Description

PUSHG Memory address Push a global variable onto the stack

PUSHL Offset from FP Push a local variable onto the stack

PUSHC Constant value Push a constant onto the stack

PUSHSTR String address Push a string address onto the stack

PUSHCLK Push the local clock value onto the stack

PUSHFP Push the frame pointer FP onto the stack

PUSHTOS Push the top item on the stack onto the stack

PUSHI Replace the top item on the stack with the contents it points to

POPG Memory address Pop a global variable from the stack

POPL Offset from FP Pop a local variable from the stack

POPI Pop the item on the top of the stack with the address given by the adjacent item

SWAP Swap the top two items on the stack

FLOAT Convert the item on the top of the stack to a fixed-point integer

INT Convert the item on the top of the stack to an integer

COMP Compare the top two items on the stack, leaving the Boolean result on the stack

OR Boolean OR of the top two items on the stack, leaving the result on the stack

AND Boolean AND of the top two items on the stack, leaving the result on the stack

ADD Integer addition of the top two items on the stack, leaving the result on the stack

SUB Integer subtraction of the top two items on the stack, leaving the result on the stack

MULT Integer multiplication of the top two items on the stack, leaving the result on the stack

MULTF Fixed-point multiplication of the top two items on the stack, leaving the result on the stack

DIV Integer division of the top two items on the stack, leaving the result on the stack

DIVF Fixed-point division of the top two items on the stack, leaving the result on the stack

MOD Integer modulo of the top two items on the stack, leaving the result on the stack

LOGICAND Bitwise logic AND of the top two items on the stack, leaving the result on the stack

LOGICOR Bitwise logic OR of the top two items on the stack, leaving the result on the stack

LOGICXOR Bitwise logic XOR of the top two items on the stack, leaving the result on the stack

LSHIFT Left shift of the top two items on the stack, leaving the result on the stack

RSHIFT Right shift of the top two items on the stack, leaving the result on the stack

NEG Integer negation of the top item on the stack, leaving the result on the stack

NOT Boolean inversion of the top item on the stack, leaving the result on the stack

ONESCOMP Bitwise logic inversion of the top item on the stack, leaving the result on the stack

JT Label jump to label if the top item of the stack is true, removing the item from the stack

JF Label jump to label if the top item of the stack is false, removing the item from the stack

JUMP Label jump to a label (unconditionally)

TEST Label Compare the top two items on the stack for equality, jump to label if equal

CALL Label Call the local procedure at label (return address automatically pushed onto the stack)

RETURN Label Return from the local procedure defined at label

ENTRY Label Set up the local frame from the pushed arguments

SYSCALL Variable list System call

VCOPY memcpy defined by the top three items on the stack, which are popped from the stack

PLOT Channel number Plot the top item on the stack on the given channel (item is copied, not removed)

Table 1 Intermediate Code Instruction Format

c:\dja\damson\damson.doc 36 Version 3.3

For dyadic operations, where the order of the arguments is important (e.g. SUB, DIV and
COMP instructions), the result is given by <next to top of stack item> - <top of stack item>,
which is readily emulated at run-time (for a SUB operation) as follows:

x1 = stackpop()
x2 = stackpop()
stackpush(x2 – x1)

The use of this approach to compilation simplifies the code generation phase. The code
generator attempts to keep the machine registers loaded with the items close to the stop of
the stack, reducing the need for memory access addressing modes and maximising the
speed of execution. The simplicity of the intermediate code format also enables the
emulator to execute relatively fast.

